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1 Review

This course was designed to give students in the Bren School an introduction
to fisheries stock assessment. The course focused on the basic principles of
fisheries population biology and not necessarily the gritty details associated
with fitting the models to data; however, we did fit all of the models to data
using sums-of-squares. All of the associated labs were done in Excel. While
programs like R and S-Plus and convenient for fitting models that do not
allow the novice to really understand what is taking place behind the scenes.

There were some major limitations to the course. First, was this was
my first time teaching a course. Second, this was the first time students
had taken a fisheries course. Naturally this lead to a lot of blank stares and
interesting dialogue. Third, was the fact that this class only met for 2 hours
a week for ten weeks. And since two weeks were devoted solely to the mid-
term and final, this left only eight weeks, or sixteen hours, to discuss and
implement five major fisheries topics.

A few of suggestions would be to first, make the class three hours a week,
one hour of lecture and two hours of lab. Second, would be to make the class
earlier in the morning. Third, would be to make this class part of a fisheries
series. Fisheries are where the money’s at. Students should be encouraged
to be more knowledgable of them.

Finally, while you are now well versed in how to conduct basic stock as-
sessments you should use considerable caution when you move forward with
you work. And, while I mentioned that you would be able to understand
95% of fisheries stocks assessment, the remaining 5% is where the devil lies.
For instance, many stock assessment assume that catch is removed halfway
through time-step. There can also be different ways of accounting for dis-
cards, natural mortality, and selectivity, that were different than what we
did in class. You could even be asked to estimate the selectivity curve based
on the data.

But perhaps the most glaring omission in this course was the fact that
we never went beyond sums of squares. Most stock assessments these days
are statistical catch at age, or catch at length models. And by statistical,
I mean you have to actually use statistics, either in the form of likelihoods
or Bayesian analysis. While this was beyond the scope of the class it is
something that you should keep in the back of your mind if you are confronted
with a stock assessment. Like my old advisor said, you can teach anyone the
biology in a day (or eight days in our case), you can’t teach the statistics in
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a day.

If you are interested in quantitative population modeling I would encour-
age you to take as many math classes as possible. Even if you suck at them,
you will still be far ahead of 95% of the competition.
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2 Growth models

We began the course with simply learning how to model the growth of a

fish. in particular, we used the Von betalanffy growth equation to model
the length-at-age. Using a simple power function we transformed the length-
at-age into the weight-at-age. Below at the descriptions of the length- and
weight-at-wage.

2.1 Von bertalanfty length at age

Von bertalanffy used the following differential equation to describe the growth
of a fish

% = K * (Loo — L(1)). (1)

The equation simply says that the growth of an average individual
changes as a function of how big the individual is. When we solved the
differential equation to get a function that describes the length of an indi-

vidual with respect to how old it is we got the following

L(t) = Lo (1 — e~ Ht=t0)) (2)

where K, L, and g are all parameter that we can guesstimate if we were
presented a graph of length verses age data. Do it for figure 1 if you don’t
remember how. You can guess that the average maximum length (L., is 400
mm. You can assume that ¢y is 0 to start with. K is the only tricky one, but
if you use equation (1) it’s actually pretty simple. The only question part is
the left-hand side of the equation. Start with the average lengths at ages 2
and 4, 250 and 330, respectively. Then Al is 80, which is 330 - 250. At is
simply 2, since 4 - 2 = 2. Then using equation (1), K = (80/2)/(400 — 250).

2.2 Weight at age
Weight-at-age is most typically modeled as a power function based on length.
w(t) = al(t)® (3)

a and b are parameters of the model, and b is almost always 3.0, or some
value very close to it. If length is measure in millimeters a is probably close
to 5.0e-6, and if it is measured in centimeters is it probably close to 5.0e-4.



Brandon Chasco ESM-296 notes Rough draft of final notes 6

Figure 1: Length at age relationship for species XX (data taken from Derek
Ogle’s R vignette).

vbgmplot.eps
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2.3 Exercise

We used data from an R vignette, and shown in figure (1) to understand
how to get initial guesses for the parameters but also how to use solver, and
sums-of-squares, to estimate the parameters that best fit the data. Next we
named the parameters: t0, K, Linf. You can name the cells that correspond
to the values in the upper naming box on the Excel worksheet. In this case
if you select the box "B3” where the value for Linf will be put, and the you
look in the upper left hand corner of the screen you will see "B3” in a box.

To predict the average length of different aged individuals we needed to
get our best estimates of the parameters based on the data. t0 we set to zero
- the age at which the fish has length zero, Linf was the average maximum
value, 400, from the graph or the pivot table. K was the only thing we had
to guesstimate, K = (80/2)/(400—250). For every row of data we calculated
L(a) = Linf * (1 - exp( -K( t0 - a)). Where a is the age of the fish in each
row, and L(a) becomes our prediction.
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3 Spawner-recruit relationships

Over there life span animals tend to produce more offspring than is needed
to replace themselves. For instance, in any given year a bird will lay several
eggs, a fish will produce thousands or millions of eggs, and over its life span
it can produce many orders of magnitude more offspring than is needed to
replace itself. This is necessary because of predation, disease, harvest, and
natural catastrophes.

These models describe the relationship between the number, or weight,
of spawners in the population at time ¢, and the number of recruits (i.e.
juveniles, young-of-the-year, age-1) at some time in the future.

3.1 Ricker

The Ricker (4) curve bends over to account over-compensation in the pop-
ulation where things like cannabalism or spawning habitat limitations are
likely to occur.

R=aSe?s (4)

« is the slope of the model at the origin, and £ is the inversely proportional
to the average number of spawners that produce the maximum number of
recruits.

You should know what the parameters of the Ricker model mean, if not
how we determined them. The derivative of the model describes the slope of
the line - steeper slope, higher production. To determine the slope we take
the derivative.

dR d
e -BS
75 dSaSe (5)
dR
. BS [ -85
e ae ?7 + (=PaSe™) (6)
dR
e -BS(1 _
7c ae (1 — BS) (7)

The slope of the model at S = 0 is . Then setting the derivative equal
to zero
dR
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ae P (1-89) = 0 9)
(1-85) = 0 (10)
S % (11)

[ is equal to the inverse of the number of spawners, that on average produce
the largest number of recruits (12).

1
S max

g = (12)

The blue line, which is an estimate of the Ricker model describing the
the Chignik data (figure 2), is made based on an guesstimate of o = 5. This
is based on looking at the dots near the origin — 1,000,000 recruits on the
y-axis divided by 200,000 spawners on the x-axis. # = 1/800, 000 because,
on average, 800,000 spawners produced the highest number of recruits.

Figure 2: Ricker spawner-recruit relationship. The dots are the observed
recruits verses spawners. The black line is the one-to-one (i.e. replacement)
line. The blue line in the model of the spawner recruit relationship based on
our guesstimates of a =5 and 8 = 1/800, 000.

rickerplot.eps
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3.2 Beverton-Holt

Similar to the Ricker model, we want to know what the parameters of the
B-H model mean. In the case of the B-H model (13) the a parameter is
inversely proportional to the slope at the origin. So instead of « = R/S
at the origin, as in the case of the Ricker, o is S/R at the origin. f is not
inversely proportion to the spawners that produce the maximum recruitment
in the case of the Ricker, instead [ is inversely proportion to the maximum
of the average number of recruits produced.

S
B =
a+pS
We repeat the process with the Ricker model and take the derivative of
the Beverton-Holt model.

(13)

iR d S
ds - dsa + 8S (14)
iR (6185 5B

S = (et B9y (15)
dR > a (16)

ds (a+ BS)?

Similar to the Ricker model, we want to see what happens to the slope
of the B-H as spawners approach zero.

zimsﬁo% - z@'mﬁom (17)
jlimséo(jl—]; = (aj0)2 (18)
ilimsﬁo% - % (19)
=>1im54,0% - é (20)

However, unlike the Ricker model, the B-H model does not have an obvious
maximum in the model where the slope would be equal to zero. Instead,
we take the limit of the actual equation and ask what happens to R(S) as
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S — o0, that is as S gets really large (21) what happens to R.

00 = . 21

lims_ooR(S) im0 + BS) (21)
' Hospital

limg oo R(S) = % (22)

R =1/p as S gets really large. Conversely, a good approximation of 3 is
1/ Rpnaz, where R4, is the maximum number of recruits.

If we look at the data in figure 3 we see that the inverse of the slope at
the origin is 200 spawners divided by 400 recruits (red lines), and the average
maximum recruits is 2,500, resulting in initial quesstimates of a = 0.5 and
B =1/2,500. It’s not a perfect fit to the data, but it’s close, and you should
be able to judge why other people’s guesses may or may not be appropriate.

Figure 3: Beverton-Holt spawner recruit relationship.

BHplot.eps

E

3.3 Beverton-Holt with steepness

This re-parameterization of the Beverton-Holt equation which is more widely
used and has more biologically meaningful parameters. It relates the param-
eter h (steepness) to virgin recruit and virgin spawning biomass. h is a
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dimensionless parameter between 0 and 1. In this way, populations can be
more easily compared.

Begin with B-H model (this is slightly different than our previous B-H
model (13))

o G‘,BQ
* T b+ By
where, Ry is the virgin recruitment, By is the virgin spawning biomass, and
a and b are parameters of the B-H model.
Steepness is the fraction of virgin recruitment achieved by a biomass that
is 20% of virgin spawning biomass.

(23)

~a0.2By
~ b+0.2By

where 0.2B is 20% of the virgin spawning biomass, and h Ry is the number
of recruits produced by 0.2B,. If you solve the equation for h by substituting
23 into 24 you get

hRq (24)

CLBO _ CLO.QBO
b+By  b+0.2Bp
B b + BO CLO.2BO
CLBO b + 02B0
ho— b it BO CLO.QBO
aBy b+ 0.2B,
0.2(b + Bo)
= 0.2B, (25)

Right now you should be thinking this is pretty cool. Now solve that 25
for b

L 020+ By
b+ 028,
h(b+02B;) = 0.2b+0.2B,
hb+0.2hBy = 0.20+ 0.2B,
hb—0.20 = 0.2By — 0.2h By
b5h—1) = Bo(l—h)
By(1 —h)

b = —— 2
S5h —1 (26)
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Now put 26 into equation 23 and solve for a.

~ 4hRy

“Thh—1

However, we want to put the a and b in terms of the parameters in our

original B-H parameterization (13). To do that a = b/a and 8 = 1/a. So

a and (8 for the B-H model in equation 13 in terms of steepness and virgin
recruitment are 28 and 29, respectively.

(27)

_ So(1—h)

4B R, (28)
Bhl

= 4hR, (29)

Take a population where you set the virgin spawning biomass to 1,000
tonnes, and the virgin recruitment in numbers is 1,000, and the steepness
is 0.8: By = 1,000, Ry = 1,000 and A = 0.95. The you know the you can
expect 950 recruits when the biomass is 200 tonnes. If A = 0.6 then you
would expect 600 recruits from a biomass of 200 tonnes (figure 4)

Figure 4: Spanwer-recruit relationship for the Beverton-Holt model pa-
rameterized for steepness. For a population with an Ry and By of 1,000,
the green line is based on a steepness of 0.6 and the blue line is based on
steepness of 0.95.

steepnessplot.eps
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3.4 Exercise

You will see what is known as a brood table for salmon, in this case the
Chignik sockeye salmon population in Chignik, Alaska. The rows are known
as brood years - the year in which the salmon spawned and buried eggs in the
gravel of their natal streams. There is column labeled ” Escapement.” What
is escapement? The other columns are the number of fish that returned from
the escapement in a particular brood year. What is a brood year? There are
several different columns because sockeye salmon born in one year do not all
return in the same subsequent year. The sum of the numbers separated by a
period, plus 1 for the year that the eggs spend in the gravel, is the age of the
fish when it returned to spawn or be caught in the fishery. The first number
is the number of years the fish spent in freshwater, and the second number
is the number of years that the fish spent in saltwater.
The purpose of this lab is to:

1. Familliarize you with spawner-recruit functions
2. Be able to "guess” the best parameter estimates
3. Estimate the best parameter with solver

4. Determine MSY, the escapement that produces maximum sustainable
yield, and Umsy the harvest rate that produces maximum sustainable
yield.

5. Estimate the lost yield of alternatives to MSY.
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4 Age aggregation: Surplus production /
Graham-Schaeffer model

Rather than assuming that population growth forever, a more realistic model
of population growth is the logistic model. Any population that is interesting
must individuals that are killed. So from the logistic equation arises what
is known as the Schaefer model in fisheries; it looks identical to the logistic
model (equation 30) but it has a term for catch. In fisheries these models are
called surplus production models and they have several derivations: Schaefer,
Pella-Tomlinson, Fox, and Schnute models to name a few. The logistic growth
has the form

dN N

T rN(1— K). (30)
Simply put, when the population N is below a certain level, K, the rate of
change in the populations, %, is positive because the part of the equation,
(1-— %) is positive. Conversely, when N > K, (1 — %) is negative and
the rate of change in the population is negative. Unfortunately, the solving
the differential equation in equation 30 would taught in the second week
rather than the second day of a class in differential equations. Rather than
describing elementary Diff Eq’s, partial fractions, and u substitutions we will
simply ignore the instantaneous growth of the population using the logistic
model, and solve for the discrete model similar to equation xx.

dN N
SN N =
dt TN - )
Nip1 — Ny N
= N (1- 2
P rN( - 7o)
N,
Nt+1 = Nt + TNt(]_ — ?>
Ny
Neww = N(l+7(1--7)) (31)

Surplus production models (30) are age-aggregate models. There is no
difference between recruits or spawners, young or old, big or small individuals
in these models. Additionally, births and deaths are included in a single
parameter of the model, . r is the population growth rate. An r = 0.1
mean the population grows at 10% a year under ideal conditions, and no
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density dependence. K is the carrying capacity of the system - the point at
which births and deaths are equal and the population is at equilibrium. C}
is the catch during time step ¢, or the model can include a harvest rate h
instead (equation 32).

N,
Nyw = N(Q+r(1—=5)—¢,

K
N,
Nepi = Ne+rNy(1— ?t) - Gy
Ny
Nt_|_1 = Nt —I—’I’Nt(l - f) - hNt (32)

Yet another way to think about the model is
Nt+1 - Nt + St - Ct. (33)

Here N, is the population size at time ¢, S; is the surplus production
(thus these are commonly referred to as surplus production models), and
Cy is the catch or harvest. Figure 5 shows the relationship between surplus
production and population size (upper panel), and total population growth
and time (lower panel), for 7 and K values of 0.2 and 1,000, respectively.

Obviously, for this example, catch (C;) will have the same units as N (i.e.
number or biomass), and the harvest fraction, h, needs to be between 0 and
1.

It’s worth noting some of the more interesting characteristics of the Schae-
fer model such as the population size a MSY. If we start with the just S(t),
the surplus production part of the equation, take the derivative, and set it
equal to zero, we can solve for the population size, N, that produces the
maximum surplus production, or MSY.

N
dS N 1
0 = p_N_TN
- "TK K
K
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The population size that produces MSY is % If you know the population
size the produces MSY, you can find the Yj;5y or the yield at MSY, by again
taking the surplus part of the model and plus in the % ior

rK K
Yusy = 5 (1=%)
rk K
Yusv = 5 - %)
rK  rK
Y, = — - —
MSY 5 1
rK
YMSY = T (35)

Now that you know the yield and N at MSY,, it is pretty easy to calculate
Umsy

Umsy = Yusv/Nusy
'K
Umsy = %
2
Uusy = 2r (36)

4.1 Catchability coefficients: relating estimates biomass|
to index data

Because we never know what the number of fish in the ocean is, we have
find a way of comparing our estimates population size to some data that
is reflective of the population size. For the purposes of this course we will
be comparing our population estimates to catch per unit effort (CPUE) or
fishery independent surveys. This requires that we estimate two additional
parameters, gopyp and Q-

The idea is simple: if you divide the catch by a constant unit of effort,
then as the biomass declines you would expect the CPUE effort to decline.
Similarly, if you conducted a transect survey, either visual or with some type
of fishing gear, then as the population changes you would expect the survey
numbers to reflect the change in the population.



Brandon Chasco ESM-296 notes Rough draft of final notes 18

4.2 Exercise

The exercise dealt with pepino data from the Galapagos. We modeled the
number of pepino as opposed to the biomass. We also introduce the idea that
population size, biomass or numbers, should be proportional the indices of
abundance whether it is catch-per-unit-effort or fishery independent surveys.
Because we never know what the number of fish in the ocean is, we have find
a way of comparing our populations estimates to some data that is reflective
of the population size. In the case of the pepino we compared our estimate
of population size based on the parameters » and K, and the catch data,
to the observed CPUE and independent survey data. This required that we
estimate two additional parameters, qocpyr and ¢suro-

1. Fit the surplus production model to the pepino data

(a) CPUE only
(b) Survey only
(¢) Both CPUE and survey

2. Find MSY, Ny, and Upsy.
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Figure 5: The following figures show the surplus production of a population
with an r = 0.2 and a K = 1000. The upper panel shows how the production
changes according to the size of the population, and the lower panel shows
how the population changes over time starting from an initial population
of 1. The blue lines show the relationship between surplus production and
population size when the population size is at 500, and the red lines show
the relationship when the population size is at 100.

SurplusProductionplot.eps
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5 Mid-term: (1) fitting spawner-recruit rela-
tionships in a mixed-stock fishery, (2) mod-
eling the population dynamics of North At-
lantic Minke whales

The assignment is due by mid-night February 15th, 2012. You are expected
to complete the spreadsheet analysis of the data using the spawner-recruit
and surplus production models, as well as answer the associated management
questions. You will be analyzing spawner recruit data from the Nushagak
district in Bristol Bay, Alaska. This is a "mixed-stock” fishery, which means
salmon from two distinct spawning populations are harvested in the same
commercial fishery. The second set of data you will be analyzing is minke
whale catch (numbers) and catch-per-unit-effort (whales captured per unit
of time fished) data from official Norwegian whaling statistics.

Note: Your job is to be a scientist not an advocate. This is your oppor-
tunity to show that in a crowd of advocates, scientists, and industry groups,
your analysis is objective and unbiased. Always start by asking what does the
data tell us.

5.1 Mixed-stock spawner-recruit data

The purpose of this exercise is to use evaluate the productivity of two stocks of
salmon in mixed-stock salmon fishery. Treat each river (Wood vs. Igushik) as
if it were a separate stock. This means you will need to determine two sets of
spawner-recruit parameters. The recruit data are in the spreadsheet labeled
"Recruits”, and the spawner data are in the spreadsheet labeled ” Spawners”.
This is a very really world situation. The State of California is spending $10’s
of millions on salmon issues in the San Joaquin and Sacramento valleys, and
the State of Alaska confronts the issue optimal spawn population size bi-
annually at its Board of Fish meetings.

1. Plot the data.
2. Estimate the parameters of the model for both stocks.

3. Find the reference points MSY, Sy, (spawning size that produces
msy), and Uy, for both stocks.
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4.

Use the table function to discuss the sensitivity of the reference points.

d.

Write-up your results. T want plots of the data and fits to the data. I
want a table of the model parameters, as well as plots of alternative
hypotheses. I want your recommendation for the sustainable levels of
harvest. I also want you discuss the problems of a mixed stock fishery
in terms of optimal harvest rates.

Hint: Use a pivot table to determine the sum of the number of recruits for
each year, for each stock

5.2

Norwegian minke whale data

The purpose of this exercise is to determine the status and productivity of
Norwegian minke whales. This has very real world implications. There has
been a call for ending the whaling moratorium and you may be asked by an
organization whether or not harvests are sustainable.

1.

2.

Plot the data.
Estimate the parameters of the model.
Find MSY, Ny, and Upsy.

Sensitivity analysis using table functions

. Write-up your results. I want plots of the data and fits to the data.

I want table of the model parameters, as well as plots of alternative
hypotheses. I want your recommendation for the sustainable levels of
harvest. I would encourage you to add a discussion section describing
the advantages and disadvantages of the type of model you chose.

Hint: You will need to be a little creative - think pepino model solver
1ssues - to keep you predicted population size from going negative.
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6 Separating recruits from adults: the delay
difference model

Last week talked about delay difference models in terms of numbers. This
week we are going to talk about delay difference models in terms of biomass.
The delay difference equation for biomass is

By = s By +psi—1Bi1 — psi—18i—2Bi_o — psp_qwi 1 Ry + wi Iy
(37)

The equation is very messy looking but if you look at the components
it actually makes intuitive sense. For now, assume that p is a measure of
allometric growth between ages. Then s, 1B, ; represents the survival of
the biomass from the previous time step, and ps; 1B;_1 — pS;_1Si_2Bi_o —
psi_1wy_1 Ry 1 represents the growth of the biomass from the previous time
step, and w; R; represents the new recruitment to the population. Getting to
that equation is an exercise in first principles.

6.1 Principle equations

There are some background equations that we need to discuss. These prin-
ciple equations deal with weight, numbers, recruitment and survival. A lot
of this is algebra, but learning how to manipulate these principle equations
will lead us to equation (37).

6.1.1 Modeling weight at age

Start with the following relationship between weight and age (38). It says
that growth between ages is proportional. The p parameter is similar to the K
parameter of the Von bertalanffy growth function (K = (dL/dt)/(Le — L)),
where K describes the change in L as a function of age ¢ relative to L. p
is a constant ratio that describes the change in weight between successive
ages.

Wo1 — Wq = p(wa - wa—l)
Way1 = p(Wa — wWe1) +wa

Worr = (14 p)ws — pwa—y (38)
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6.1.2 Numbers at age and survival

Consider the following model of the number of fish that are age a.
Nt—|—1,a+1 = Nt,aSt (39)

It says the number of fish age @ + 1 in time ¢ + 1 is equal to the number of
fish in the previous age category and time step, times the survival rate in
the previous time step. The number of people in a population that are age
20 next year, is equal 19 year olds this year times the fraction that survive.
The total population is

mazx(a)

Nt= Z Nt,a (40)
a=L

where L is the age when the fish first recruit to the fishery. The total popu-
lation in the next time step (¢ + 1) is little trickier. It is

maz(a)
Ny Ny
a=L
maz(a)
= Np1w = Y Nijap + Rip (41)
a=L

where R; is the recruitment to the fishery in time ¢.
Finally, a slightly more obscure situation, but one we will need to consider,
the numbers at age in the previous year (¢ — 1) is

maz(a)

Ny = Z Ni_1a
a=L

maz(a)

Nt—l = Z Nt—La—l _Nt—l,a—l
a=L
maz(a)

= N1 = Y Neigo1— N (42)

a=L

Notice that the subscripts now includes the age class (L—1), but the N,y 1
will not have recruited to the fishery since age L —1 is less than age L. So, we
need to subtract where V;_; ;_; from the population. The only remaining
question is what is Ny_; ,—1. Our model only keeps track of the recruits and
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the biomass (see equation 37), we need to change N, ; ;_; into a recruits.
Remember, the R = N;_1 1,151, 50

N,
N1 = b
St—1
R

= N1 = — (43)
St—1

6.1.3 Changing numbers to biomass

Now consider the following, the biomass of the population that is age a at
time ¢. It is the product of the weight at age (w,) and the numbers at age

(Nt,a>
Bt,a = waa (44)

To calculate the total biomass at any time we simply sum over all of the
ages

maz(a)

Bt: Z Nwwa (45)
a=L

where, L is the age at recruitment, and max(a) in the maximum age of
fish capture in the fishery. The key is that the age subscript for both the
weight and numbers have the same a subscript.

To calculate the biomass of the population at ¢t + 1 we have to use what
we learned from equation (41).

maz(a)

Biti= > Niy1at1Wat1 + Waer R (46)
a=L

Finally, to calculate the biomass of the population at t — 1 we have to use
what we learned from equation (41).

max(a) R,
Biy= > Niig W1 — Wap-1—— (47)

a=L St—1
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6.2 Combining parts 6.1.1, 6.1.2, & 6.1.3

To calculate the biomass we need to begin by weight t age and numbers at
age, thus using equation (44) and multiplying by Niy1441. We get

Nittar1iWarr = (14 p)weNes1a+1 — pPWa-1Nei1.a+1 (48)

And if we want to turn equation 48 into biomass total we need to sum
across all ages (see equation 45)

Y NigtaniWarr = Y [(1+ p)waNegyras1 — D pWa—1Nis1a41]

a=L a=L a=L
=Y NiptariWarr = Y [(14 p)waNe oS — > pwa—1Ni—1,0-155t-1]
a=L a=L a=L

(49)

Based on equation (46) we change the right side of the equation (48) to
look like

Bt + Woer, Resr = D _[(14 p)waNiase — D, pwa—1Ni—1,a-15¢5¢-1)(50)

a=1L a=L

On the right side of the equation (50) we can use equation (44) and (47)
to get

R
B+ we—rRipn = (14 p)Bsy — p[Bi—1 — Wa—r—1 S—t]StSt—1 (51)
-1

When you multiply every, and cancel things out, you end up with

Biyw = (14 p)Bisy — psise—1Bi—q + Wa—p—18: Ry — Wa—p Ry (52)

At this point you are done. However, equation (52) predicts the biomass
in year ¢ + 1. Personally, my mind works better if the equation looks more
like the original equation (37). To do this simply subtract 1 from everywhere
you see a ¢ + 1 and you will end up with equation (37).
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6.3 Adding a recruitment function

Besides changing numbers to biomass, one of the keys to this model is that
we are modeling recruitment explicitly. To do this we could choose from a
number of spawner recruit functions, but I will you the Beverton-Holt with
steepness.

0.8RohB_1
0.20Ro(1 — h) + (h — 0.2)B,_y,

One of the caveats of the delay difference model is that the year a fish
recruits to the fisheries they are vulnerable to fishery and they contribute
directly to the spawning biomass. In many cases, however, the fish do not
recruit to the fishery the year following spawning. This is why we include a
lag in the biomass that results in the recruitment in year ¢{. For instance the
recruitment in 2012 would be based on the spawners in 2009 if there was a
three year lag between spawning and recruitment.

It turns out that the Ry can be determine directly from equation (37) if
we assume the population is at equilibrium. The biomass at equilibrium is

R(t) = f(Bi-L) = (53)

By = sBy+ psBy — ps®By — psw;_1 Ry + wi Ry (54)

The reason is because by definition if the population is at equilibrium
the survival will be equal every year, the biomass will be equal every year,
and recruitment will be equal every year. If By is an estimable parameter of
the model, then Ry is as follows,

By = sBg+ psBy — ps*By — pswi_1 R + w Ry
= Bo SB()(l +p— pSQ) — Ro(pSwt_1 + wt)
= Ro(pswi—y — wy) Bo(s+p—ps®) — By
= Ro(pswi_1 —w;) = Bo(s+p—ps®—1)
(s+p—ps*—1)
By
(pswi—1 — wy)

= Ry'l=

6.4 Exercise

You will be fitting a delay-difference model to the South African Cape hake
data. Additionally, you fit a surplus production model to the same data and
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compare the results. The data are the catches from 1917 to 1992, and cpue
from 1955 to 1992. The parameters of the model you will be estimating are
B0, h, s, and @epye. Additional parameters of the model include ©, R0, p,
wr,, Wr,—1-

6.4.1 Step 1: Create you columns

In this instance we will need to keep track of the biomass at time ¢ (B(t)),the
recruits (R(t)), the spawners (S(t)), and the survival s;. If you are interested
in comparing the results to the surplus production model, you should create
an additional biomass prediction for the surplus production model. Since we
will be fitting the model the cpue data, you will need to create a column for
the predicted cpue.

6.4.2 Step 2: Name your cells

There are a lot more parameter to keep track of this model than there were in
previous models. All of the following parameters will figure into our model:
B0, h, and gepue, and ©, RO, p, s, wr, wr—1. Only BO, h, and gepye will
be estimated. Although we could estimate p and s, this introduces a lot of
instability to the model.

6.4.3 Step 3: Build your model

We will divide the modeling into several steps. The first is the preliminary
calculations - particularly calculations for parameters that we do not need to
estimate. Second, we will break down the model into components - recruits,
spawners, and survival - so the we minimize the errors that might be intro-
duced by putting the entire biomass calculation into one cell. Third, we will
calculate the predicted cpue. Finally, we will calculate the sums-of-squares
and at minimize it using solver to find the best fit to the data.

6.4.4 Preliminary calculations

Although it is not necessarily a calculation I always start by guessing what
By is. T have found the best way to do this is to assume that the maximum
catch is 10% of By. The maximum catch occurred in 1973 at 243, so my first
guess of By is 2430.
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Next, we will be using the Beverton-Holt stock recruitment function pa-
rameterized for steepness, h (74).

B . O‘SRohBt—L-I—l
R(t) = f(Bi_4+1) = 0.20Ry(1 —h)+ (h—0.2)B;_141 (56)

It turns out that the Ry can be determine directly from equation (?77?) if
we assume the population is at equilibrium. The biomass at equilibrium is

By = sBy+ psBy — ps* By — pswi_1 Ry + w; Ro (57)

The reason is because by definition if the population is at equilibrium
the survival will be equal every year, the biomass will be equal every year,
and recruitment will be equal every year. If By is an estimable parameter of
the model, then Ry is as follows,

By = sBg+ psBy — ps’By — pswy_1 Ry + w: Ry
= By sBo(1+ p — ps?) — Ro(pswi_1 + wy)
By(s+p— ps®) — By
= Ro(pswi_, —w;) = Bo(s+p—ps’—1)

= Ro(psw;_1 —wy)

2
—ps?—1
Ry — BO(S+/J ps’ —1) (58)
(pswi—q — wy)
based on the s, p, and By using the following equation
L@ 2
Ry = Bo( s — ps+ ps?) (59)

(wo — pswy)

This is equation is actually derived from first principles, but we will not
take the time to do that here. Another parameter of the spawner-recruit
function is O, the ratio of virgin biomass to the virgin recruitment.

=
Part of the delay difference model is growing the recruits up to the size
when they first enter the fishery. If you look at the worksheet labeled ” Brody”

o (60)
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you will see the average weight of observed hake in grams. There are a couple
of things to note about this data. First, hake do not ”recruit” to the fishery
until age 3 therefore the weight at recruitment (W) is 382 grams. The weight
of the hake one year prior to recruitment (Wp_;)is 161 grams. You should
enter both of these values where you have labeled these parameters on the
Model spreadsheet.

The last thing we need to do is calculate the Brody parameter p. Re-
member that the Brody parameter describes the proportional relationship
between the weight at age a + 1 and a, and @ and a — 1. Such that

War1 = (14 plw, — pwy_1 (61)

Based on the data in the Brody worksheet you have observations of the
weight at age, and based on equation 61 you can predict the weight at age. By
minimizing the square difference between the observed and predicted weight
at age you can calculate the Brody coeflicient.

You have now completed the preliminary calculations. Now things get
tricky.

6.4.5 Building the components

You will start to that the a lot the math associated with fisheries model
is pretty straight forward. Where most people run into problems is the
accounting, and delay difference models have a lot of accounting. This is the
first model where you are being asked to keep track of more that just a single
life history stage.

If you look at the model you will see that there are different life history
stages, as well as different time steps in the same equation. There are both
adult and juveniles on the right side of the equation and those adults and
juveniles arise from different periods. Keep track of these things by adding
as many columns as you need in order to make sense of the equations. I have
added the following columns: ”recruits”, ”spawners”, and ”survival”.

The first thing you will need to do is add a couple of years prior to the
first year there is data. This is important because fish are 3 years old when
they first recruit to the fishery, and as a result we need to go back a couple
of years in the past to "seed” the model. From 1914 to 1917 you can assume
that the population is at By because either fishing just started or hasn’t
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begun. Similarly the recruitment in those years is equal to Ry the virgin
recruitment.
Begin with the easiest one, survival. Survival in 1914 is

s1914 = $(1 — Chg14/ B1o14) (62)

Since there was no catch in 1914, the survival in 1914 you simply be equal
to the average survival s. Copy this equation down.

Simplicity sake we will simply assume that the spawning biomass is equal
to the biomass in the biomass column.

Now the tricky part, calculating the recruitment. First, look at the delay
difference model. We are predicting the biomass at time ¢ + 1, but we know
that the recruits at t+1 (Ryy1) are actually based on the spawners three years
ago. Therefore, starting in 1918 the first real year of predictions, the recruits
in 1918 will be a function of the spawners in 1915 - three years earlier.

Now all we have to do is simply calculate the biomass in year 1918 using
the delay difference equation and copy it down.

At this point you should be well aware of how to calculate the predicted
cpue and the square difference between the observed and predicted cpue.
You should do this respective columns and copy the equations down. Only
calculate the square difference for those years that actually have cpue data.




Brandon Chasco ESM-296 notes Rough draft of final notes 31

7 Cohort analysis: fully age structured model}

Until now we have dealt with models that aggregate the age-structure of pop-
ulations into totals numbers or biomass, and estimate aggregate population
parameters - intrinsic growth rate, steepness, carrying capacity. The problem
is that populations do have age structure and it can be very informative about
a population’s trend. We are going to learn to build age-structured models
of populations that are more realistic and flexible than the age-aggregated
models we have built thus far. The real disadvantages of these models is that
they are model complex (I think they are actually less complex than delay-
difference models), and they these models still assume closed populations
without any predation, spatial complexity, or competition.

Table 1: Table of variables, forcing functions, and parameters for an
age-structured model.

N, Number of fish that are age a during time ¢
SB; spawning biomass during time ¢

TB; total biomass during time ¢

CB; commercial biomass during time ¢
vulnerability of age a

length of age a

weight of age a

maturity of age a

natural mortality of age a

EERE

steepness
Ry initial recruitment
© stock recruitment parameter

Lo  maximum length of average individual
K Von Bertalanfty growth parameter

to length at age zero

lso  length at 50% vulnerability

los  length at 95% vulnerability

mso  maturity at 50%

mos maturity at 95%
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7.1 Natural mortality

The are two ways to describe natural mortality: instantaneous verses discrete
mortality. The discrete model simply says that the natural mortality, or
survival, in a given year is simply the a fraction of the total population. For
instance, if survival is 0.8, then 80% of the population survives to the next
time step. If we consider that the natural mortality occurs instantaneously
through out the year we can use the following differential equation

AN
— = MN.
dt (63)

Solving the equation in terms of N and ¢t we get
Ny = Noe M. (64)

Since we are only considering yearly time steps, you can determine the pop-
ulation size at any time ¢ based on the following equation

Nt = Nt_16_M. (65)
Similarly, the survival half way through the year would be N; = N,_;e= %M,
And extending the model to an age-specific model.

Nig = Ny qe™Me. (66)

This formulation is slightly more useful if you want to consider situations
where spawning or natural mortality occur at specific times in the year.

7.2 Growth: von Bertalanftfy growth equation, length-
weight relationship

We use the von Bertalanffy growth model to describe the length of a fish

that is age a
lo = Loo(1 — e~Kla—a0)) (67)

The weight at age is simply
Wa = 'le (68)
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7.3 Biomass: total, commercial, spawning

The following are the equations for spawning biomass (69), commercial
biomass (70, and total biomass (71) of a population of fish at time ¢ that are
age a.

SBt,a = Nt,awama (69)
CBt,a = Nt’awal/a (70)
TBt,a = Nt,awa (71)

To determine the biomass in a particular year, we would sum across ages,

2a-

7.4 Vulnerability /selectivity and maturity ogives

All fishing gear is selective. One of the biggest advantages of age structured
models is that they allows us to account for the vulnerability/selectivity (72)
of fishing gear on different age classes.

1

—in(19)[ Se=s0) |

(72)

. —
1+e

Additionally, we can assume that there is differential maturity (73) for each

age class.
1

(la.'—m )
[—ln(lQ)——(mgs_ r0),

Me = (73)

1+e
The curves are logistic curves, whose rates are symmetric about the sy or
mso inflection points. ssg is the length at which 50% of the fish would be
captured if the harvest was 100%. Similarly, the sgs is the at which 95% of
the fish would be captured if the harvest fraction was 100%. The closer the
two parameters are to one another the more knife-edge the selectivity is. A

similar analogy applies for the maturity at age ogive.

7.5 Population dynamics
7.5.1 Numbers at age

There may be many age classes within a given year, but there are only three
equations you need to remember. You need to calculate the recruits, the
intermediate ages, and the plus group (7.5.1).
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f(SBt_l) a=1
Nia =13 Nitao1(l—wqvg_1)e™ l<a<a,
Ni14-1(1— U 1Va—1)e M + Niq2(1— Ut—le>€_M a=x

The recruits are a function of the spawning biomass in the previous year.
The number of fish the next that are age a is simply the number of fish one
age younger from the previous year, multiplied by the natural and fishing
mortality. The plus group, the oldest age individuals in the model, are equal
to the sum of those individuals one year younger the previous year, and the
numbers in the plus group from the previous year, times the survival of both.

7.5.2 Recruitment

This is easy, you have already done it numerous times. We will use the B-
H with steepness, and the recruits this year are a function of the spawning
biomass last year.

B N 0.8RohSB;
Rt = J(5Bi) = 0.20Ry(1 —h) + (h—0.2)SB;_; (74)

where SB,;_; is found by equation (69).

7.5.3 Initial population size

The population has to start somewhere; we call this the initial population
size, or virgin population. We begin with the recruits in the first year being
the virgin recruitment, Ry. The number of two year old fish in the first year
(N12) is simply Roe=M) The number of three old fish in the first year (N13)
is simply Roe(2") | or Nj.e(=™). When you get to the last age group, the
plus group, you need to do something a little tricky. You need to account for
all those fish that live past the maximum age of the model. For instance, if
your species lives to be 40 but your model only goes out to age 10, because
age 10 are the old fish in the catch, then you plus group should be age 10 or
11.

Nl,x—le_M

(75)
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8 Sums-of-squares

You may have conducted experiments in the lab, were you control for a bunch
of conditions and tweak one thing. You measures the response and the you
test the null hypothesis that the thing you tweaked has no effect on the
response variable.

In our case, fishing is the experiment and the population is response vari-
able. This means that the parameters of our models are actually hypotheses;
however, instead of testing a null hypothesis we use a tool find the param-
eters (i.e. hypothesis) of the model that best explain the data. The tool
we are using is sums-of-squares. Sums-of-squares is the first step toward the
more formal process of using likelihoods to test hypotheses.

SSQ = (observation; — predicted;)* (76)

What is sums-of-squares really asking?

The ”"squares” part of sums-of-squares refers to the square difference
between the observed and predicted values, where (observation; —predicted;)
is the difference for the ith observation. (observation; — predicted;) is also
known as the error for the model. Because our model is not perfect is does
not pass through every data point and there is a difference between the model
and every data point.

The "sum-of”, >, refers to taking the sum of all the square difference
between the observed and predicted values. The model that best explains
the data is the one that minimizes that SSQ.

Take the Chignik spawner-recruit data as an example again, and look at
the difference between the predicted number of recruits from the model and
the observed number of recruits from the 1943 brood year (figure 6). The
model predicts 1,493,852, but the observed returns were 4,592,190. Therefore
the square-difference for the 1943 observation is (1,493,852 — 4,592, 190)2.
If you sum up the square-differences for all years you get the SSQ.

But that is only one square difference for a single set of parameters. The
square difference would change for another set of parameters. Since the
square-difference is a measure of the error in our model’s ability to describe
the relationship between spawners and recruits using a Ricker model, we
want to know which parameter set (o and () results in the smallest square-
difference. It is possible you tweak your guesstimates of a and ( a little bit
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and eventually find the best parameter set, but that would probably take a
very long time.

This is why we use solver. Solver uses an algorithm to find the set of
parameters that minimizes the difference you have calculated. But solver
isn’t perfect. As you saw in lab it is possible for solver to find a number of
solutions that it thinks is the minimum square difference. The geeky answer
as to why this occurs is there are several local minima, and solvers algorithm
may not smart enough to escape the local minima on its way to finding the
global minima. One solution to this problem is to set your initial parameter
values to a couple of different values and see if your model converges to the
same parameters estimates.

Another problem that we ran into, and this is more of a model specifica-
tion problem, is the our model would predict negative values for population
size. Rather using the rule, (observation; — predicted;)?, we would use the
rule (In(observation;) — In(predicted;))?, where In is the natural logarithm
with base e. When the model predictions become less than or equal to 0 (i.e.
<=0) the value of the square difference blows up because you can’t take the
log of a number that is less than or equal to 0.
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Figure 6: Ricker spawner-recruit relationship for the Chignik sockeye salmon
run, and the error (dashed line) between the observed recruits and the
model (blue line) estimate.

rickererrorplot.eps
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9 Final project: Complete a stock assess-
ment of Bacaccio rockfish (Sebastes pau-
cispinis) using a Graham-Schaeffer, delay-
difference, and age-structured model

For your final project you will complete a stock assessment of the Bacaccio
rockfish (Sebastes paucispinis) off the California coast. Like the yelloweye
rockfish, the Bacaccio has seen dramatic reductions in the total allowable
catch (TAC) based on perceived biomass declines from fishery dependent
and independent survey data.

Using the models you have learned in this class you can now assess for
yourself whether the Bacaccio are in fact over-harvested and by how much.
I would encourage you to fit each population model: surplus production,
delay-difference, and age structured model to the data. You will see that
each model has its benefits and limitations, and the biological conclusions
that one can draw from the models very dramatically.

I have provided Excel workbooks for each model. The worksheets have
been formatted so that all you need to do is begin building the model. The
surplus production model will be the easiest - it has the fewest moving parts.
The delay difference and age structured models will be a little more difficult
because the equations are larger and more involved.

Finally, the are a number of ways to check you results as you build the
models. First, since will assume that the populations start out at equilibrium,
make sure the population stays at equilibrium if the catch time series is zero.
Second

9.1 Description of biological parameters

In your models you will be estimates a number of biological parameters:
either r and By, or Ry and h - for the delay difference model you will also be
estimating the Brody (p) coefficient, but this is exogenous to the rest of the
model. For the delay difference model and the age structured model there
are several other parameters that must be included to complete the models;
they are listed below.
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Model parameter calculation value
Delay difference
s (average survival) ety 0.81
Age structured
M (natural mortality) 0.15
Lo 91
to -1.81
K 0.15
a 6.00e-6
b 3.01
mso (len. 50% mature) 46.00
mos (len. 95% mature) 51.00
vso (len. 50% vulnerable) 40.00

vos (len. 95% vulnerable) vso + 5  45.00

9.2 Description of catch

Each spreadsheet has a time series of commercial (trawl, hook and line, and
set net) and recreational (RecSouth and RecNorth) catch data. You can
choose to fit to one or all (summed across all fisheries) data. The catches
include discards and are record in metric tonnes (MT).

9.3 Description of indices

There are a number of indices of stock status that are available for the Bacac-
cio. The fishery independent surveys include a triennial (Triennial) survey
conducted by NOAA, the California Cooperative Oceanic Fisheries Investi-
gations (CalCOFI) index of spawning abundance, recruitment indices (Rec
Index and Juv Survey). While fishery dependent surveys for the commercial
fleet include an area weigthed catch per unit effort (Area weighted CPUE)
and the Vandenberg CPUE (Vandenberg CPUE), and for the recreational
fishery there is northern California (MRF north) and southern California
(MRF soCal) index.



